EXAMPLE

1.2 THE ERROR IN TAYLOR'S POLYNOMIAL 9
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In this last formula, « is any real number. The coefficients () are called binomial
coefficients and are defined by
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In all of the formulas, except (1.14), the point c is between 0 and z. The proof of
(1.14) is taken up in problem 8.

By rearranging the terms in (1.14), we obtain the sum of a finite geometric
series Or progression,

k=1,2,3,...
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And by letting n — coin (1.14) when |z| < 1, we obtain the infinite geometric series
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Approximate cos(z) for [z| < 7/4, with an error of no greater than 10~5. Since the
point ¢ in the remainder of (1.13) is unknown, we consider the worst possible case




